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Perception is fallible. Humans know this, and so do some nonhuman animals like
macaque monkeys. When monkeys report more confidence in a perceptual decision,
that decision is more likely to be correct. It is not known how neural circuits in the
primate brain assess the quality of perceptual decisions. Here, we test two hypotheses.
First, that decision confidence is related to the structure of population activity in the
sensory cortex. And second, that this relation differs from the one between sensory
activity and decision content. We trained macaque monkeys to judge the orientation
of ambiguous stimuli and additionally report their confidence in these judgments. We
recorded population activity in the primary visual cortex and used decoders to expose
the relationship between this activity and the choice-confidence reports. Our analysis
validated both hypotheses and suggests that perceptual decisions arise from a neural
computation downstream of visual cortex that estimates the most likely interpretation
of a sensory response, while decision confidence instead reflects a computation that
evaluates whether this sensory response will produce a reliable decision. Our work
establishes a direct link between neural population activity in the sensory cortex and
the metacognitive ability to introspect about the quality of perceptual decisions.

neural coding | visual cortex | sensory uncertainty | population representation | metacognitive

Perception is fallible (1–3). Humans know this (4–6), and so do some nonhuman animals
like macaque monkeys (7–14). Indeed, perceptual interpretations of the environment are
automatically accompanied by a sense of confidence in this interpretation. For example,
when soccer fans in a football stadium see a striker score a goal, they may hold their
breath and ask other fans whether the ball really went in. Judging the trajectory of fast
moving objects is difficult, and we know this. The “metacognitive” ability to evaluate
the quality of perceptual interpretations helps us to plan future actions (15), learn from
mistakes (16, 17), and optimize group decision-making (18). How does the brain assess
the quality of perceptual decisions? A prominent hypothesis is that early areas in the
sensory cortex provide raw sensory measurements which are used by downstream circuits
in the association cortex to guide perceptual decisions (19–23) and assign confidence
in these decisions (7, 10, 12, 13). This hypothesis pertains to the neural coding of
information and specifically applies to population representations. In other words, there
may exist a systematic relationship between neural population activity in the sensory
cortex and confidence in perceptual decisions. Consistent with this hypothesis, a recent
fMRI study showed that variability in neural activity in the human visual cortex was
linked to variability in behavioral confidence reports (24). And two prior studies of
macaque monkeys showed that electrical and optogenetic stimulation of visual area MT
influenced the monkeys’ opt-out choice behavior in a motion discrimination postdecision
wagering task, suggesting that neural activity in the sensory cortex is causally related to
confidence in perceptual decisions (10, 25). Here, we set out to document the basic
characteristics of this relationship.

To examine the relationship between sensory activity and confidence, we developed a
task that invites subjects to jointly report a perceptual decision and their confidence in
this decision (also see ref. 27). We trained two macaque monkeys (F and Z) to judge
whether a visual stimulus presented near the central visual field was oriented clockwise
or counterclockwise from vertical. The monkeys communicated their judgment with
a saccade to one of four choice targets, organized in a rectangular pattern around the
fixation mark (Fig. 1A). Horizontal saccade direction indicated the perceptual judgment,
vertical saccade direction indicated the confidence in the decision. Choices were rewarded
in a manner that incentivizes observers to introspect about decision quality on a trial-by-
trial basis. Specifically, high confidence judgments resulted in a larger immediate reward
when correct, but in a loss of potential future reward when incorrect (Materials and
Methods). While the animals performed this task, we recorded extracellular responses
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from neural populations in the primary visual cortex (V1), the
first sensory area in the primate visual system where individual
neurons signal the task relevant feature, stimulus orientation (28).

We found that confidence in perceptual decisions can be
predicted from V1 population activity. The relationship between
sensory activity and decision confidence appears as strong as the
relationship between sensory activity and decision content. This
assessment is based on the analysis of one hidden-layer neural
networks trained to either predict the perceptual choice or the
confidence report from V1 population activity. In both cases, the
networks captured behavioral effects of stimulus manipulations
(variations in stimulus orientation and stimulus contrast) as
well as behavioral variability under repeated presentations of
the same stimulus. As predicted by theoretical models of
perceptual confidence, the relation between sensory activity and
decision confidence fundamentally differs from the one between
sensory activity and decision content. It involves an additional
nonlinearity and consideration of sensory uncertainty. Together,
these results reveal how an essential metacognitive ability arises
from downstream transformations of neural population activity
in the sensory cortex.

Results

Behavior and Computational Hypothesis. Both monkeys
learned to report confidence in a fine orientation discrimination
task. Their perceptual choices lawfully depended on stimulus
orientation, and they made few errors in the easiest stimulus
conditions (monkey F = ± 18.2◦, median performance, 100%
correct; monkey Z = ± 15.0◦, median performance, 100%
correct). Consider the choice behavior for an example recording
session. Choices reported with high confidence are shown in
green, choices reported with low confidence in red, and symbol
size is proportional to the number of trials (Fig. 1B). As is evident
from the raw data, for every stimulus condition, high confidence
choices tended to be more accurate than low confidence choices
(Fig. 1B, green vs. red symbols). As a consequence, high
confidence choices exhibited a steeper overall relationship with
stimulus orientation (Fig. 1B, green vs. red curve). We quantified
this effect by estimating the slope of both psychometric functions
(operationalized as the inverse of the SD of a cumulative Gaussian
function fit to the choice data) and computing the slope ratio
per session (Materials and Methods). For the vast majority of
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Fig. 1. Perceptual confidence task: behavior and computational hypothesis. (A) Orientation discrimination task sequence. After the observer fixates for at least
500 ms, four choice targets appear, followed by the stimulus. The stimulus is placed in the neurons’ visual receptive field (RF). The observer judges whether
the stimulus is rotated clockwise or counterclockwise relative to vertical. They jointly communicate this orientation judgment and their decision confidence
with a saccade toward one of four choice targets. Horizontal saccade direction indicates the perceptual judgment, vertical saccade direction the confidence
report. Correct decisions are followed by a juice reward (Materials and Methods). (B) Psychophysical performance for monkey Z in an example recording session.
Proportion of clockwise (CW) choices for high-contrast stimuli is shown as a function of stimulus orientation, conditioned on the observer’s confidence report.
Symbol size reflects the number of trials (total 527 trials, slope ratio = 0.57). The curves are fits of a behavioral model (Materials and Methods). (C) The ratio
of the slope of high contrast psychometric functions. Sensible confidence judgments yield values smaller than one. For the humans, each symbol represents
the slope ratio of one subject across all three blocks of trials. For the monkeys, each symbol represents the slope ratio in one recording session (humans:
n = 19; monkey Z: n = 17; monkey F: n = 12). Gray bars indicate interquartile range. (D) Meta-uncertainty for a group of human subjects and two monkeys. For
the humans, each symbol represents metacognitive performance of one subject in one block of trials. For the monkeys, each symbol represent metacognitive
performance in one behavioral session (humans: n = 17; monkey Z: n = 60; monkey F: n = 58). Gray bars indicate interquartile range. (E) Slope of high contrast
psychometric functions for the same group of humans as (D). Each symbol represents the slope for one subject in one block of trials. (F ) Schematic of a process
model for decision confidence (26). (G) Proportion high confidence judgments as a function of stimulus orientation for high and low contrast stimuli (filled
vs. open symbols) in an example recording session. Symbol size reflects the number of trials (total 744 trials). Solid lines are fits of the process model shown
in panel (F ). (H) Average firing rate as a function of stimulus orientation for two model neurons (black vs. gray) and two stimulus contrasts (open vs. closed
symbols). (I) (Left) Joint responses of a pair of model neurons to repeated presentations of four stimuli that differ in orientation and contrast. (Middle) Illustration
of a mapping rule that converts the pairwise activity into a perceptual decision. (Right) Illustration of a mapping rule that converts the same responses into
a confidence report. Decision confidence is high when the sensory response is strong (toward Upper Right corner) and nonambiguous (away from the line of
unity). n.s. not significant, *P < 0.05, **P < 0.01, and ***P < 0.001.
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recording sessions, high confidence choices were associated with
a steeper psychometric function than low confidence choices
(Fig. 1C ; monkey F: median slope ratio = 0.42, P < 0.001,
Wilcoxon signed rank test against 1; monkey Z = 0.40, P <
0.001). This effect mirrored the choice behavior of a group of hu-
man subjects, naive to the purpose of our study, who performed a
similar orientation discrimination task (Fig. 1C ; n = 19, median
slope ratio = 0.27, P < 0.001; Materials and Methods). These
results suggest that the monkeys introspected about the quality of
each perceptual decision and relied on a confidence assignment
process that is qualitatively similar to the one used by humans
(see SI Appendix, Fig. S1 for further comparison).

We wondered whether the monkeys’ ability to assess the
quality of perceptual decisions quantitatively resembles that of
humans. The statistic we have considered thus far is inadequate
to answer this question. The association between confidence and
the slope of the psychometric function is a robust signature
of sensible confidence assessments, but the slope ratio does
not only depend on the quality of confidence assessments. It
also depends on the subject’s perceptual sensitivity and their
proclivity to report high confidence (26, 29, 30). To quantify
metacognitive ability, we need a statistic that is isolated from
these other nuisance factors (26, 31, 32). Here, we estimated a
statistic called meta-uncertainty from choice-confidence data in
each session (�m; explained further below and in Materials and
Methods). Meta-uncertainty expresses how well a decision maker
can discriminate reliable from unreliable choices, and higher
values indicate lower metacognitive ability(26). Surprisingly, we
found that the monkeys outperformed the human subjects during
this group’s first visit to the lab (Fig. 1D, humans block 1 vs.
monkeys; humans performed 1,100 trials in block 1, median �m
= 2.25, median �m for monkeys = 0.47, P < 0.001, Wilcoxon
rank sum test). We reasoned that task experience was the likely
driver of this effect. To test this, we asked the human subjects
to perform the experiment two more times. Reassuringly, they
eventually caught up with the monkeys (Fig. 1D; median �m for
humans in block 3 = 0.52, median �m for monkeys = 0.47,
P = 0.53). This change in meta-uncertainty with experience was
not due to perceptual learning. The slope of high and low contrast
psychometric functions did not significantly change from block
1 to 3 (Fig. 1E ; median high contrast slope for block 1 = 0.57,
median high contrast slope for block 3 = 0.63, P = 0.55,
Wilcoxon rank sum test; median low contrast slope for block
1 = 0.60, median low contrast slope for block 3 = 0.56, P =
0.73). We conclude that our animal paradigm invites high-quality
metacognitive behavior.

What is the nature of the confidence assignment process that
underlies this metacognitive capacity? Previous work has shown
that choice-confidence data in tasks like ours are often well
captured by a hierarchical process model in which confidence
reflects an observer’s estimate of the reliability of their decision
(26, 31–33). In these models, a stimulus gives rise to a noisy,
one-dimensional decision variable (for example, a perceptual
orientation estimate). Comparison of this decision variable with
a fixed criterion yields a perceptual decision (“clockwise” or
“counterclockwise;” Fig. 1 F,Top). The reliability of this decision
is revealed by computing the distance between the decision
variable and the decision criterion, and normalizing this distance
by an estimate of the uncertainty of the decision variable (Fig. 1 F,
Middle). Comparison of this decision reliability estimate with a
fixed confidence criterion yields a confidence report (“confident”
or “not confident;” Fig. 1 F, Bottom). The quality of the
confidence reports is limited by a subject’s uncertainty about the
uncertainty of the decision variable (“meta-uncertainty”) (26),

or by an analogous noise term, depending on the specific model
variant (31, 32). As can be seen for an example dataset, this
computational framework captures how the monkey’s tendency
to choose the “confident” response option jointly depends on
stimulus orientation and stimulus contrast (Fig. 1G and SI
Appendix, Fig. S1 E and F ).

Decision-making areas downstream of sensory cortex do not
get one-dimensional perceptual estimates as input, but high-
dimensional population responses. They implement operations
akin to these idealized model computations by mapping this
population activity onto the available choice options. To gain an
intuition for these mapping rules, consider a pair of hypothetical
V1 neurons whose responses selectively depend on stimulus
orientation and stimulus contrast (Fig. 1H ). One of these
neurons prefers orientations smaller than 0◦, while the other
one on average responds more vigorously to orientations larger
than 0◦. Thus, their joint activity pattern contains information
about stimulus orientation, regardless of stimulus contrast.
Specifically, when neuron 2 is more active than neuron 1, the
stimulus is more likely to be oriented clockwise from vertical
and vice versa (Fig. 1 I, Left). The mapping rule used by a
downstream decision-making circuit can thus be understood as
projecting the population activity onto a one-dimensional axis
perpendicular to a linear hyperplane that separates clockwise
from counterclockwise response patterns (Fig. 1 I, Middle). The
resulting decisions will not be flawless—due to neural response
variability, there is considerable overlap between both response
distributions, making errors inevitable. Crucially, the population
response also contains information about the probability of such
an error. The closer the population activity is to the hyperplane,
the more probable an error. This effect is amplified for activity
patterns that reside close to the bottom left corner of this state
space. This part of the space is visited when the stimulus-drive is
weak, for example because stimulus contrast is low or stimulus size
is small. Here, response patterns are dominated by spontaneous
activity, resulting in high levels of sensory uncertainty (34–37)
and many incorrect decisions (Fig. 1 I, Middle). These geomet-
rical considerations yield two testable predictions. First, that
decision confidence is related to the structure of population
activity in the sensory cortex. And second, that this relation differs
from the one between sensory activity and decision content.

Predicting Perceptual Decision Confidence from V1 Activity.
While the animals performed the perceptual confidence task, we
used multilaminar electrode arrays to record population activity
from ensembles of V1 units whose receptive fields overlapped
with the stimulus location (Materials and Methods). Populations
ranged in size from 8 to 46 units (median = 15 units). Consider
the activity of three simultaneously recorded units. Stimulus
onset elicited a strong transient response, followed by a weaker
sustained response (Fig. 2A). Some units were better driven by
counterclockwise orientations (Fig. 2 A, Top), some by clockwise
orientations (Fig. 2 A, Bottom), and some did not differentiate
between these stimulus conditions (Fig. 2 A, Middle). We
first asked whether the observed populations could in principle
provide the sensory signals to support the perceptual task. To this
end, we trained linear stimulus decoders to discriminate between
clockwise and counterclockwise stimuli and tested them on
nonambiguous hold-out trials (Fig. 2B; Materials and Methods).
We found that each recorded population could support the
perceptual task above chance level (neural performance ranged
from 57.4 to 96.9% correct, median = 69.2%). These decoders
have only been provided with neural population responses and
stimulus labels (“clockwise” or “counterclockwise”). Yet it is
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Fig. 2. Predicting perceptual decisions and decision confidence from V1 population activity. (A) Spike rasters (dots) and PSTHs (lines) of three example units
during presentation of a clockwise (gray) and counterclockwise (black) stimulus. (B) Analysis of the linear stimulus decoder. The proportion of correctly predicted
perceptual choices minus the proportion expected by chance is plotted against the decoder’s task performance. Each symbol represents a recording session.
(C) The correlation between the monkeys’ confidence reports and the linear stimulus decoder’s output is plotted against the decoder’s task performance.
(D) Example mapping rules that can be implemented by a linear (Left) and nonlinear (Right) decoder. (E) Comparison of the proportion correctly predicted
perceptual choices by a linear (abscissa) and nonlinear (ordinate) choice decoder. (F ) Comparison of the proportion correctly predicted confidence reports by
a linear (abscissa) and nonlinear (ordinate) confidence decoder. n.s. not significant, *P < 0.05, **P < 0.01, and ***P < 0.001.

natural to ask whether they can offer some insight into the
monkeys’ behavior. We compared the stimulus decoders’ choices
with the animals’ reports on a trial-by-trial basis while controlling
for the stimulus and found that the fraction of correctly predicted
perceptual decisions exceeded the number expected by chance
(Fig. 2B; median difference = 6.3%, P < 0.001, Wilcoxon
signed rank test). Both variables exhibited a clear relationship; the
better the neural populations could support the perceptual task,
the better the stimulus decoder predicted perceptual decisions
(Fig. 2B; Pearson correlation: r = 0.79, P < 0.001; SI Appendix,
Fig. S2). This finding is consistent with the hypothesis that
decision-making circuits downstream of visual cortex estimate
the most likely interpretation of a sensory response, just like these
stimulus decoders do. We also compared the stimulus decoders’
output with the animals’ confidence reports and found them to
be unrelated (Fig. 2C ; median Pearson correlation = −0.03, P
= 0.16). This result is not surprising. It simply confirms that in
our task, the relationship between sensory activity and decision
content cannot account for decision confidence.

To expose the relationship between sensory population activity
and decision confidence, we trained confidence decoders to
discriminate between trials in which monkeys reported choices
with either high or low confidence. For this analysis, we
considered both linear and nonlinear decoders (specifically, one-
hidden layer neural networks; Materials and Methods). Linear
decoders can slice a high-dimensional space in various ways
(Fig. 2 D, Left), but none of the possible variations fully captures
the hypothesized confidence mapping rule (Fig. 1 I, Right).
Nonlinear decoders can implement both linear mappings or more
complex input–output relations (Fig. 2 D, Right), making them
better suited to test the hypothesis. Importantly, this additional
complexity is not guaranteed to be beneficial. This will only

be the case if the brain’s mapping rule requires the complexity
(compare Fig. 1 I, Middle and Right). To connect this concept
to our data, we first compared linear and nonlinear choice
decoders trained to predict perceptual decisions (Materials and
Methods). We orthogonalized the neural choice and confidence
subspaces by curating the decoders’ training sets such that the
animals’ perceptual choice contained no information about their
confidence report and vice versa (Materials and Methods; SI
Appendix, Fig. S3A). As expected, linear and nonlinear choice
decoders performed similarly well, suggesting that a linear
mapping rule suffices to relate sensory population activity to
perceptual decisions (Fig. 2E ; median performance linear choice
decoder = 66.8% correctly predicted choices; nonlinear choice
decoder = 68.8%, median difference = −0.7%, P = 0.34,
Wilcoxon signed rank test). We then performed the same
comparative analysis on the confidence reports and obtained a
different result. The nonlinear confidence decoders consistently
outperformed their linear counterparts in predicting confidence
(Fig. 2F ; median linear confidence decoder = 61.8% correctly
predicted confidence reports; nonlinear confidence decoder =
65.6%, median difference = 4.0%, P < 0.001). In general,
confidence reports could be predicted about as well as perceptual
decisions (median performance difference between nonlinear
choice and confidence decoders = 3.5%, P = 0.19). Together,
these results confirm that perceptual decision confidence is related
to the structure of population activity in the sensory cortex, and
that this relationship is more complex than the relation between
this activity and decision content.

Interrogating the Confidence Decoder. We seek to understand
how sensory population activity informs confidence in perceptual
decisions. So far, our analysis suggests that nonlinear decoders
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trained to predict behavioral choice-confidence reports from
neural population activity are a powerful tool in this endeavor. Of
course, this is only true to the extent that the mapping relation
learned by the decoders resembles the one used by the brain.
This need not be the case. Clearly, the confidence decoders are
imperfect predictors of the animals’ behavior. It is possible that
their success is based on exploiting idiosyncratic relationships
between neural responses and confidence reports that are distinct
from the brain’s confidence computation (38). If this were the
case, the confidence decoders’ output should not exhibit the key
signature of sensible confidence assignments, nor should they be
able to generalize to new testing conditions. We investigated both
issues. We first computed the slope of the psychometric function,
conditioned on the confidence decoder’s output (Materials and
Methods; Fig. 3A). Higher confidence outputs were associated
with a steeper psychometric function (Fig. 3B; median slope
ratio = 0.88, P = 0.02, Wilcoxon signed rank test). This pattern
is significant for monkey Z (median slope ratio = 0.85, P = 0.03,
Wilcoxon signed rank test) and suggestive for monkey F (median
slope ratio = 0.89, P = 0.22, Wilcoxon signed rank test). This
pattern recapitulates a key feature of the animals’ behavior and
implies that the confidence decoder’s outputs are sensible. The
confidence decoder recognizes which neural responses are more
likely to result in a reliable perceptual decision.

If the mapping rule learned by the confidence decoder
resembles the one used by the brain, it should transfer to more
challenging testing conditions, such as input patterns it has not
been exposed to during training. To test this, we probed the
confidence decoders with synthetic patterns of neural activity.
We designed these patterns such that they would expose the
“pure” effects of stimulus orientation and stimulus contrast on
decision confidence. Specifically, for every stimulus orientation,
we created a synthetic pattern by computing the trial-averaged
population response, thus removing the effects of neural response
variability (Materials and Methods). We approximated the effects
of manipulating stimulus contrast by multiplying these synthetic
neural responses by different levels of gain (39–41). Here, we
explored gain changes that went far outside the range driven
by our experimental contrast manipulation to create out-of-
distribution responses (Materials and Methods). Consider the
output of the confidence decoder for an example recording

session. More extreme orientations are always associated with
more high confidence outputs, for both the mean population
responses (Fig. 3C, gray line) as well as across all artificially
induced levels of gain (Fig. 3C, colored lines). Additionally,
higher levels of response gain are always associated with more
high confidence outputs, regardless of the stimulus orientation
(Fig. 3C ), similar to the behavioral effect of increasing stimulus
contrast (Fig. 1G). These effects were evident across datasets
(Fig. 3D; median difference in predicted proportion high
confidence outputs for more vs. less extreme stimulus orientations
= 15%; median difference for a response gain of 0.5 and 2 =
38%). Thus, the decoder’s confidence output jointly depends on
stimulus orientation and stimulus contrast, thereby recapitulating
the second key feature of the animals’ behavior (SI Appendix,
Fig. S1 E and F ). Moreover, the mapping rule learned by the
decoder generalizes to new testing conditions. We conclude that
the confidence decoder evaluates neural activity in a sensible and
robust manner.

Relationship Between Choice and Confidence Computations.
Our analysis of neural activity was inspired by a computational
framework in which confidence reflects an observer’s estimate of
the reliability of their decision(26, 31, 32). In this framework, the
computations that form a decision are distinct from the ones that
assign confidence in these decisions. However, there is a direct
relationship between the latent variables that underlie the overt
perceptual choices and confidence reports. Specifically, more
extreme decision variable values will yield higher confidence vari-
able values (Fig. 1 F, Middle). The decoders we trained on neural
data use a latent variable to predict behavioral choice-confidence
reports (Materials and Methods). We wondered whether these
latent variables would be related as predicted by the computa-
tional framework. If this were the case, it would provide direct
evidence for the notion that the brain’s confidence computation
evaluates the quality of the sensory evidence that informed the
decision.

Consider the neurally decoded decision variable for an example
recording session. There are three important effects. The decision
variable varies linearly with stimulus orientation (Fig. 4A). The
slope of this relationship depends on stimulus contrast (Fig. 4 A,
Left vs. Right panel). And trials that culminate in a “clockwise
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Fig. 4. The decoders’ latent variables follow the predictions of a computational framework of perceptual decision confidence. (A) The latent variable of the
nonlinear choice decoder plotted against stimulus orientation, for high and low contrast trials (Left vs. Right), conditioned on the animal’s perceptual choice
(yellow vs. blue) for an example dataset. (B) Summary of the decision variable’s statistical structure across all recording sessions. (Left) Regression slope between
orientation and average decision variable at low and high contrast. (Middle) Difference in regression offset between counterclockwise and clockwise responses.
(Right) Accuracy of decision variable at discriminating behavioral decisions. Gray bars indicate interquartile range. (C) The latent variable of the nonlinear
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vs. green) for an example dataset. (D) Summary of the confidence variable’s statistical structure across all recording sessions. (Left) Quadratic coefficient of
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the stimulus-specific median. (F ) Summary of the median-split analysis illustrated in panel (E) for all recording sessions. Each data point represents a single
stimulus condition. n.s. not significant, *P < 0.05, **P < 0.01, and ***P < 0.001.

decision” are associated with a higher decision variable value
(Fig. 4A, orange vs. purple). These effects were present in most
of our datasets (Fig. 4 B, Left and Middle; median slope for
high contrast stimuli = 0.064, P < 0.001; median reduction
in slope for low contrast stimuli = 0.02, P = 0.04; median
change in offset with perceptual choice = 0.22, P < 0.001,
Wilcoxon signed rank test). The neurally decoded confidence
variable exhibits a different structure. It varies parabolically with
stimulus orientation (Fig. 4C ). The width and offset of the
parabola depend on stimulus contrast (Fig. 4C ). And trials that
culminate in a “high confidence” report are associated with a
higher confidence variable value (Fig. 4C ). Again, these effects
were present in most of our datasets (Fig. 4 D, Left and Middle;
median quadratic coefficient for high contrast stimuli = 0.002,
P < 0.001; median change in this coefficient for low contrast

stimuli = 0.001, P = 0.005; median change in offset for low
contrast stimuli = 0.15, P < 0.001; median change in offset
with confidence report = 0.11, P < 0.001 Wilcoxon signed
rank test). To compare the strength of the association of both
decision and confidence latent variables with the overt behavior,
we computed their ability to discriminate behavior in the absence
of stimulus variation (Materials and Methods). A discriminability
value of 50% corresponds to chance performance, while 100%
means that the behavior can be perfectly predicted from the
latent variable. For both perceptual choices and confidence
reports, we found a modest association (Fig. 4 B and D,
Right; median decision variable discriminability = 54%, P <
0.001; median confidence variable discriminability = 56%, P
< 0.001, Wilcoxon signed rank test). This association tended
to be stronger for populations that contained more stimulus
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information (SI Appendix, Fig. S3B). Thus, the decoders’ latent
variables provide insight into the neural processes underlying the
overt choice-confidence reports.

Plotting the confidence variable against the decision variable
for all trials of an example recording session reveals a U-
shaped relationship, consistent with the proposed confidence
computation (Fig. 4 E, Left). If this relationship arises from
this computation, it should leave a signature even within the
same stimulus conditions. Specifically, trials that yield a more
extreme decision variable value should result in a higher value
of the confidence variable. To test this prediction, we computed
the median of the absolute value of the decision variable for
every stimulus condition and computed the average of the
confidence variable separately for trials above and below the
median. As can be seen for an example recording session, more
extreme decision variable values were systematically associated
with higher levels of confidence (Fig. 4 E, Right). This effect was
evident across all datasets, for both monkeys (Fig. 4F ; median
difference in confidence variable: monkey F = 0.06, P < 0.001,
monkey Z = 0.11, P < 0.001). Our analysis ensured that choice
and confidence signals occupied orthogonal neural dimensions
(Materials and Methods). We therefore conclude that the brain’s
confidence computation evaluates the same sensory population
activity that informed the decision.

Discussion

In this study, we investigated neural population activity in V1
during a perceptual confidence task. We sought to understand
the brain’s confidence assignment process. This process underlies
the metacognitive ability to evaluate the quality of perceptual
interpretations. We suggest that confidence arises from a non-
linear transformation of the same sensory signals that inform
perceptual decisions. When the sensory population response is
strong and unambiguous, this transformation results in high
decision confidence (Fig. 1I, green zone). Conversely, when the
sensory population response is weak or ambiguous, it results
in low levels of confidence (Fig. 1I, red zone). Our proposal
is supported by three distinct observations. First, nonlinear de-
coders of V1 population activity can predict monkeys’ confidence
in perceptual orientation judgments (Fig. 2F ), establishing a
direct link between the structure of sensory activity and decision
confidence. Second, these decoders yield sensible and robust
confidence outputs when presented with synthetic patterns of
neural activity (Fig. 3), suggesting they capture the essence of the
brain’s confidence computation. Third, trials that yield stronger
and less ambiguous V1 responses as evidenced by a neurally
decoded decision variable also result in higher levels of neurally
decoded confidence (Fig. 4).

In our task, subjects simultaneously reported decision content
and confidence. This is not always the case in confidence
experiments. Some tasks instead use sequential reports, meaning
that the confidence report is probed at a later moment in time
(7, 42). While this may seem like a subtle distinction between
experimental designs, it has deep implications. In sequential
reports tasks, information that was not available during decision
formation can contribute to the final confidence assignment
(43, 44). On the flip side, information that was available during
decision formation may get lost during the intervening period
(44). It thus seems likely that the connection between the sensory
information that guides perceptual decisions and confidence in
these decisions will be weaker in sequential reports tasks. In
extreme cases, both types of confidence could be considered
different subtypes (sometimes referred to as propositional and

reflective confidence) (42). This study investigated propositional
confidence in perceptual decisions. This is the type of confidence
we rely on when deciding whether or not we have enough time
to cross the street given the speed and distance of approaching
traffic. It differs from the confidence we have in a good test score
after talking to classmates who took the same test.

Our experimental paradigm enabled us to compare choice
and confidence decoders trained on the same neural responses.
We found that the relationship between sensory activity and
decision confidence is as strong as the relationship between
sensory activity and perceptual choice. Decoders predict the
observers’ confidence report and perceptual choice with similar
accuracy across stimuli (Fig. 2 E and F ) and in the absence of
stimulus variation (Fig. 4 B and D). However, we suggest that
there is a fundamental difference between both relationships.
Perceptual choices arise from a neural computation downstream
of sensory cortex that identifies the most likely interpretation
of the sensory response; decision confidence instead arises from
a computation that evaluates whether this sensory response will
produce a reliable decision (Fig. 1F ). Because these computations
are distinct, they can manifest as mapping rules of sensory
population activity that occupy orthogonal neural subspaces
(Fig. 1I ). Previous work offers indirect support for these ideas.
Specifically, microstimulating sensory neurons in a postdecision
wagering task altered monkeys’ opt-out choice behavior as if
they experienced a change in the sensory signal (10). These
results suggest that the same sensory signals that inform decision
content inform decision confidence. A different study employing
the postdecision wagering paradigm found that pulvinar neu-
rons represent decision confidence but not perceptual choice
(9). Inactivating the pulvinar altered monkeys opt-out choice
behavior but not their perceptual sensitivity (9). These results
suggest that distinct brain circuits may be responsible for decision
formation and confidence assignment. Consistent with this,
studies that employed a postdecision time investment task found
that orbitofrontal cortex neurons in rats play a similar role (12, 13)
and represent an abstract decision confidence signal (14). Our
work clarifies how neural circuits can extract such pure decision
confidence signals from sensory population activity. However,
note that in some experimental paradigms, the same neurons
may represent decision content and confidence (7, 10).

We have shown that decoders of V1 activity capture behavioral
effects of stimulus manipulations as well as behavioral variability
under repeated presentations of the same stimulus (Fig. 4 A
andC ). Correlations between neural and behavioral responses can
illuminate their causal relationship. However, these correlations
can also arise for spurious reasons. Previous studies employing bi-
nary perceptual decision-making tasks found that choice-related
signals in the sensory cortex reflect a combination of factors.
These include the perceptual decision-making process (45–
48), but also choice-aligned fluctuations in attention (49, 50),
expectation (51), motor planning (52), and in other unspecified
sources that impact sensory activity (53, 54). Could spurious
reasons underlie the association between neural activity and overt
behavior in our study? This concern is warranted. There is no
statistical guarantee that the associations we reported primarily
reflect the confidence assignment process. However, our task-
design has a unique strength compared to binary decision-
making tasks. Subjects generated a two-dimensional choice-
confidence report. Our analysis ensured that both dimensions
were orthogonal in neural population space. Nevertheless, we
found that trials that yielded a more extreme perceptual decision
variable also resulted in a higher level of confidence (Fig. 4 E and
F ). For this association to arise for spurious reasons, there would

PNAS 2025 Vol. 122 No. 26 e2426441122 https://doi.org/10.1073/pnas.2426441122 7 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 U
N

IV
E

R
SI

T
Y

 O
F 

T
E

X
A

S 
A

T
 A

U
ST

IN
 o

n 
Ju

ne
 2

5,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

12
8.

62
.5

2.
33

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2426441122#supplementary-materials


need to be a factor whose properties are more complex than simple
choice-alignment. It would need to jointly align with perceptual
choices and confidence reports. While we cannot rule out this
possibility, we hope that the richness of our behavioral paradigm
has helped to expose the confidence computations implemented
by neural circuits downstream of sensory cortex.

The ability to recognize which perceptual interpretations of the
environment are at risk of being flawed is a hallmark of metacog-
nition and as such often associated with higher intelligence. Our
findings suggest that the confidence computations underlying
this ability in the primate brain at least in part arise from simple
deterministic transformations of sensory population activity.
These transformations can in principle be realized in basic
neural circuits. As such, our findings highlight how sophisticated
behavior can arise from a cascade of simple operations. This is well
appreciated in the domain of artificial intelligence. We suggest
that it may also be true for certain components of biological
intelligence. In general, metacognitive judgments are imperfect
(26, 29, 31). Here, this was evident from the levels of meta-
uncertainty displayed by our human and nonhuman subjects
(Fig. 1D). As of yet, we do not know the neural causes of this.
Metacognitive inefficiencies may originate in noise in sensory
representations (35, 55–57). Alternatively, these inefficiencies
may arise downstream of sensory cortex, for example from
suboptimal confidence mapping rules (58). The task-paradigm
and computational framework we have developed offer promising
vehicles to address these outstanding questions and achieve a
more complete understanding of the neural mechanisms that
underlie and constrain our sense of confidence.

Materials and Methods

Animal Subjects. Our experiments were performed on two adult male macaque
monkeys (Macaca mulatta, aged 7 and 10 y old at the time of the experiments).
The animals were trained to perform an orientation discrimination task with
saccadic eye movements as operant responses. Monkey F had previously
participated in another research study (22, 23), Monkey Z had not previously
participated in research studies. All training, surgery, and recording procedures
were approved by the University of Texas Institutional Animal Care and Use
Committee and conformed to the NIH Guide for the Care and Use of Laboratory
Animals. Under general anesthesia, both animals were implanted with three
custom-designed titanium head posts and a titanium recording chamber which
enabled access to V1 (59).

Apparatus. The monkeys were seated in a custom-designed primate chair
in front of a gamma-corrected 22-inch CRT monitor (Sony Trinitron, model
GDM-FW900), with their heads restrained using three surgical implants. Stimuli
were shown on the CRT monitor, which was positioned approximately 60 cm away
from the monkeys’ heads. The CRT had a resolution of 1,280 by 1,024 pixels with
a refresh rate of 75 Hz. Eye position was tracked continuously with an infrared eye
tracking system at 1 kHz (EyeLink 1000, SR Research). Stimuli were presented
using the Psychophysics Toolbox (60) in MATLAB (MathWorks). Neural activity
was recorded using the Plexon OmniPlex System (Plexon). Precise temporal
registration of task events and neural activity was obtained through a Datapixx
system (Vpixx). All of these systems were integrated using the PLDAPS software
package (61) (https://github.com/HukLab/PLDAPS). An analogous setup was
used for the human psychophysical experiment, except that head position was
stabilized using a chin rest and the monitor was a Hewlett Packard, model A7217.

Visual Stimuli. We constructed oriented visual stimuli by bandpass filtering
3-D luminance noise with a filter organized on a velocity plane. The filter’s
spatial frequency passband was centered at a spatial frequency of 2.5 cycles
per degree and had a bandwidth of 0.5 octaves. Its velocity passband was
centered at a speed of 2.5◦ per second (which corresponds to a central temporal

frequency of 5 Hz) and had a bandwidth of 1 octave. The filter’s orientation
bandwidth was 3◦. For each stimulus condition, the stimulus set contained
five unique filtered noise movies. Each orientation discrimination experiment
included stimuli that varied in orientation and contrast. Stimulus contrast was
computed by normalizing the summed orientation amplitude spectrum of each
stimulus frame with the summed amplitude spectrum of a reference grating
with matching spatial frequency. There was one high and one low contrast level
per experiment. The high contrast value was constant across experiments, the
low contrast value varied somewhat across experiments in an attempt to elicit a
difference in the slope of high and low contrast psychometric curves. The ratio
between low and high contrast values ranged between 0.37 and 0.63 with a
median value of 0.56. The high contrast stimuli spanned a range of 11 different
orientations, the number of low contrast orientations varied across experiments
(15 experiments had 11 orientations, 7 had 9, 3 had 7, and 4 had 2). Orientation
values were chosen to maintain approximately equivalent performance across
high and low contrast stimuli. Stimuli were presented with equal frequency in
14 of 29 recordings. In 15 of 29 recordings, stimuli were presented with equal
frequency, except for three high contrast stimulus orientations in which a single
filtered noise iteration was overrepresented. For all illustrated example sessions
(Figs. 1 B and G, 3A, and 4 A and C and SI Appendix Fig. S1 A and E) stimuli were
presented with equal frequency.

Fixation Task. At the beginning of each recording session, monkeys first
performed a passive fixation task. We used a hand-mapping procedure to
estimate the location of the spatial receptive fields of visually responsive units.
The average receptive field center estimate served as the center location for the
visual stimuli presented during the rest of the recording session. We conducted
an initial fixation task during which we presented sinusoidal gratings of varying
orientation for 1,000 ms each. This was followed by the orientation discrimination
task.

Orientation Discrimination Task. The orientation-discrimination task is a
variant of classical visual categorization tasks in which the subject uses a saccadic
eye movement as operant response (51, 62, 63). We used a richer version of this
task in which subjects are invited to additionally report their confidence in each
perceptual decision. Each trial began when the subject fixated a small white dot
at the center of the screen. Upon fixation, four black choice targets appeared—one
in each quadrant of the screen. Targets to the left of the fixation point represented
counterclockwise decisions, targets to the right clockwise decisions. Upper choice
targets indicated high decision confidence, lower choice targets low confidence.
After a variable prestimulus fixation period, the stimulus appeared in the near
periphery (average eccentricity: monkey F = 4.32◦, monkey Z = 3.00◦) for
500 ms. Subjects judged the orientation of the stimulus relative to vertical. The
stimulus then disappeared along with the fixation mark and subjects reported
their decision and confidence with a saccadic eye movement to one of the
four choice targets. Auditory feedback was given to indicate the accuracy of the
decision and the chosen level of confidence. Specifically, the tone differed for
correct and incorrect trials and the sound was played twice in quick succession for
high confidence reports. If the decision was correct, a liquid reward was delivered
via a computer operated reward system (New Era). Vertically oriented stimuli
received random feedback. Trials in which the monkey did not saccade to one
of the choice targets within 3 seconds were aborted. To incentivize meaningful
confidence reports, there were four possible reward levels. It required one correct
decision to move from level 1 to 2, 3 further correct decisions to move from
level 2 to 3, and 3 more to reach level 4. Subjects remained at level 4 until they
reported an incorrect decision with high confidence, which reset the score to
level 1. Resets could occur at any level. The higher the reward level, the larger
the reward for a correct decision. In addition, correct decisions reported with
high confidence were rewarded more generously than correct decisions reported
with low confidence. High confidence rewards for each level were 0.04, 0.16,
0.32, 0.64 ml for monkey F and 0.116, 0.232, 0.464, 0.928 ml for monkey Z.
Low confidence rewards were a scalar function of high confidence reward. This
scalar value varied across sessions and was adjusted to titrate the proportion
of high and low confidence responses (average 0.68± 0.04 for monkey Z and
average 0.82± 0.04 for monkey F. Lower scalar values encouraged more high
confidence responses due to a larger reward difference between high and low
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confidence. Each trial, the current reward level was indicated to the monkey by
the duration of the prestimulus fixation period (the lower the reward level, the
longer this duration). Both monkeys managed to stay at the highest reward level
for the majority of trials (fraction of trials at reward level 4: monkey F = 64%,
monkey Z = 80%). We conducted 12 successful recordings from monkey F and
17 from monkey Z (average number of reward level 4 trials per session, monkey
F = 753; monkey Z = 1,026). In four sessions, only two different low contrast
stimulus orientations were used. The low-contrast psychometric functions from
these four sessions were excluded from Fig. 3B.

Human Psychophysical Experiment. Nineteen human subjects (10 male, 9
female; ages 19 to 32) with normal or corrected-to-normal vision participated
in the experiment. The experimental protocol was approved by the local ethics
committee (Institutional Review Board of The University of Texas at Austin) and
all participants gave written informed consent. The human behavioral task was
the same as the animals’ orientation discrimination task, with the exception that
the stimulus was presented more centrally and subjects earned points instead
of liquid reward (points per high confidence correct response as a function of
reward level: 2, 4, 8, 16; points per low confidence correct response: 1, 2, 4, 8).
Human subjects began by completing 175 training trials. We used these initial
trials to estimate each subject’s orientation sensitivity. This sensitivity estimate
determined the range of stimulus orientations used in the main experiment.
We chose the range such that the subjects’ overall task performance level would
resemble that of the animals. This procedure worked well for all but two subjects
for whom we discarded the first block of trials. Subjects performed the main task
in subblocks of 50 trials. Subjects were rewarded with monetary points in the
same manner as the macaques were rewarded with liquid reward, and received
analogous auditory feedback at the end of each trial. Every 50 trials, subjects were
given additional visual feedback on their total point count. Subjects completed
three blocks of 1,100 trials. Eleven subjects judged the same filtered noise stimuli
as the monkeys did, eight subjects were presented with deterministic sinusoidal
gratings instead. Because meta-uncertainty did not systematically differ across
both groups of subjects, we included all these datasets in our analysis except
for the two subjects who had poorly calibrated first blocks yielding a total of 17
human observers in this analysis.

Behavioral Analysis. Each session we measured observers’ behavioral capa-
bility to discriminate stimulus orientation by fitting the relationship between
stimulus orientation and probability of a “clockwise” choice with a psychometric
function consisting of a lapse rate and a cumulative Gaussian function. To
compare the behavioral capability associated with low and high confidence
reports, each psychometric function had its own steepness parameter (the inverse
of the SD of the cumulative Gaussian). The parameters controlling lapse rate
and the point of subjective equality (the mean of the cumulative Gaussian) were
shared across both psychometric functions. Model parameters were optimized
by maximizing the likelihood over observed data, assuming responses arise
from a Bernoulli process. For the analysis documented in Fig. 1C, each dataset
was analyzed independently.

CASANDRE (26) is a two-stage process model in which comparison of a noisy
internal representation of the stimulus (Vd) with a decision criterion (Cd) yields
a perceptual choice (3). The decision variable is on average unbiased, but it
is subject to Gaussian noise with SD �d . This noise determines the level of
perceptual uncertainty. A confidence variable (Vc ) is computed by normalizing
the strength of the decision variable (|Vd − Cd|) with an estimate of perceptual
uncertainty (�̂d), modeled as a sample from a lognormal distribution whose
mean is the true perceptual uncertainty, �d , and whose SD is �m. Because
�m reflects the uncertainty about perceptual uncertainty, it is referred to as
meta-uncertainty. It is the sole parameter in the model that limits the quality
of confidence judgments (with higher values indicating lower metacognitive
ability). For each dataset, we obtained an estimate of the subject’s level of
meta-uncertainty by fitting the CASANDRE model to the choice-confidence data
using a fitting procedure described previously (26). In brief, the model had
eight parameters: the SD of the decision variable (�d) (one per contrast level,
two in total), the decision criterion (Cd) (one per contrast level, two in total),
the level of meta-uncertainty (�m), the confidence criterion (Cc ) (we allowed
for choice-dependent asymmetries, two in total), and lapse rate (�). For each

dataset, we computed the log-likelihood of a given set of model parameters
across all choice-confidence reports and used an iterative procedure to identify
the most likely set of parameter values (specifically, the interior point algorithm
used by the Matlab function “fmincon”). For the analysis documented in Fig. 1
D and E, the first and last blocks of trials completed by the human subjects were
analyzed independently.

Electrophysiological Recordings. During the orientation discrimination task,
werecordedextracellularspikingactivity frompopulationsofV1neuronsthrough
a chronically implanted recording chamber. Every recording session, we used
a microdrive (Thomas recording) to mechanically advance one or two linear
electrode arrays (Plexon S- and V-probes; 32 or 24 contacts) into the brain. We
positioned the linear arrays so that they roughly spanned the cortical sheet
and removed them after each recording session. Continuous neural data were
acquired and saved to disk from each channel (sampling rate 30 kHz, Plexon
Omniplex System). To extract responses of individual units, we performed
offline spike sorting. We first automatically spike-sorted the data with Kilosort
(64), followed by manual merging and splitting as needed (with the “phy”
user interface, https://github.com/kwikteam/phy). Given that the electrodes’
position could not be optimized for all contact sites, most of our units probably
consist of multineuron clusters. We used the fixation task to identify visually
responsive units whose activity selectively depended on stimulus orientation.
We measured each unit’s response by expressing spike times relative to stimulus
onset and counting spikes within a 1,000-ms window following response onset.
For each unit, we chose a response latency by maximizing the stimulus-associated
response variance (65). We visually inspected orientation tuning curves and
excluded untuned units from further analysis.

Decoders. We ensured that both linear and nonlinear choice decoders could not
use decision confidence to predict choices and that confidence decoders could
not use perceptual choice to predict confidence. Specifically, we orthogonalized
choice and confidence information in the training trials by maintaining a fixed
ratio of high and low confidence reports across clockwise and counterclockwise
choices and a fixed ratio of clockwise and counterclockwise choices across
high and low confidence reports. To do so, we randomly selected trials
from underrepresented trial types (e.g “high-confident counterclockwise”) and
concatenated them to the training set. To minimize potentially confounding
influences of cross-trial variation in the animals’ motivation, attention, and
alertness, we only included “reward level 4” trials in the training set. Training
sets on average contained 1,088 trials and were identical for linear and nonlinear
decoding analyses.

Linear Decoders. To assess how well the recorded populations could support
the perceptual task, we trained linear stimulus decoders to discriminate between
clockwise and counterclockwise stimuli. We used all stimuli whose orientation
differed from 0◦. We first z-scored each unit’s spike counts. We then used these
z-scored responses to estimate the set of linear weights, w = (w1, ...wn),
where n is the neuronal population size, that best separate clockwise and
counterclockwise stimulus response patterns, assuming a multivariate Gaussian
response distribution:

w = Σ−1 s, [1]

Where s is the mean difference of the stimulus-category conditioned z-scored
responses and Σ is the covariance matrix of the z-scored responses. The
decoder weights are calculated from observed trials. To avoid double-dipping,
we excluded the trial under consideration from the calculation and solely
used all other trials to estimate the weights. This way, we obtained a “cross-
validated” stimulus judgment from the linear stimulus decoder for each trial.
We quantified how well these decoders captured the animals’ behavior by
computing the fraction of consistent perceptual choices between behavior and
stimulus decoder’s predictions and subtracting the fraction expected by chance
based on the decoder’s and the animal’s overall success rate (Fig. 2B). We
quantified how well the output of the stimulus decoders could predict confidence
behavior by computing the Pearson correlation between the binary vector of
behavioral confidence reports and the binary vector of the stimulus decoder’s
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choice predictions (Fig. 2C). In a later analysis, we compared nonlinear choice
and confidence decoders with their linear counterparts (Fig. 2 E and F). For this
analysis, we used exactly the same set of training and hold-out trials for the
linear decoders as we used for the nonlinear decoders.

Nonlinear Decoders. We trained feed-forward multilayer perceptron neural
networks on z-scored V1 responses to either predict the animals’ perceptual
choice or their confidence report. We implemented networks within the
TensorFlow framework using the AdamW optimizer with an objective to minimize
binary cross-entropy. Models consisted of 1 hidden layer with 15 hidden units
per layer, had a dropout rate between layers of 0.1, and the learning rate was set
to 0.001. We explored various hyperparameter settings and found the results
presented here to be robust across settings. We trained networks on 80% of
trials (training/validation set) and obtained a cross-validated prediction on the
held-out 20% of trials, rotating trials between training and held-out set such
that each trial had a cross-validated prediction (Fig. 2 E and F). To ensure that
every trial would be part of the hold out set, we trained 30 different networks per
dataset. Just like we did for the linear decoders, we solely used cross-validated
choice and confidence predictions in our analysis. For each trial, we selected
the decoder’s prediction from one random network in which this trial was held
out. We found 30 networks to be sufficient for every trial to be held out at
least once.

To interrogate whether the confidence decoders extracted meaningful
information from V1 responses, we compared the slope of the psychometric
function conditioned on the confidence decoder’s output (Fig. 3A). This
comparison is most reliable when both psychometric functions contain a similar
number of trials. We achieved this by using the median of the latent confidence
variable as confidence criterion. We did this for both high and low contrast trials.

We probed the confidence decoders with synthetic patterns of neural activity
(Fig. 3C). To create these patterns, we first computed the cross-trial average firing
rate per unit for a given stimulus orientation using only high contrast, reward
level 4 trials. We manipulated the gain of these responses by multiplying this
average population response vector with a single scalar factor. For each recording
session, we used this scalar-multiplied activity as input to one randomly picked
networkoutof30whichhaspreviouslybeentrainedonreal,nonscalar-multiplied
data (Fig. 3D).

We studied the decoders’ latent variables (Fig. 4). This analysis involved
computing a discriminability index. To do so, we first z-scored the latent variables
per stimulus condition, thus removing stimulus-driven effects. We then created
two groups of trials based on the animals’ behavioral reports (either their
perceptual choice or their confidence report). We included all stimulus conditions
for which both response options had been used at least 5 times. Finally, we
computed the area under the curve for both sets of trials (45).

Data, Materials, and Software Availability. The data and analysis code that
support the findings of this study are available in the public GitHub repository
associated with this manuscript: https://github.com/zoebsinger/V1-Confidence-
Physiology.git (66).
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